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Essential Modern Physics Knowledge 
 
COMPLEX NUMBERS 

   For                , the complex conjugate is                   and the absolute 
value is the distance on the complex plane from the origin to the point z.  
 
 
We also utilize Euler’s formula stating that ie cos isin± θ = θ ± θ .                   
 
PARTICLE IN A BOX: ALLOWED ENERGY STATES 
 For a quantum particle of energy, E, in a potential box where U(x) = 0 
for 0 < x < a, it can only exist between x = 0 and x = a (since E = K + U and  
U = ∞ outside of 0 < x < a).  A quantum particle is described by a wave 
function that can exist in the box at only certain wavelengths (λ, first 
three shown) the wave function must be zero at the sides ( x = 0 & x = a). 
 For a standing wave, ( ) ( ) ( )x Asin kx Bcos kxψ = + , this requires that 

 
 
 

 
The physics comes in with de Broglie: 
  
 
 
Thus, the allowed momenta of the particle in the box are: 
 
 
 
Since the energy of the particle is purely kinetic (U = 0), 2E p 2m= gives the allowed energies:  
 
 
 
PROBABILITY DENSITY, NORMALIZATION, & EXPECTATION VALUE 
 
 
 
  
 
 
Normalization                                    
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*** Other than saying a quantum particle is described by a wave, this is just math! *** 

KNOW THESE 
RELATIONSHIPS! 

BE ABLE TO FIGURE 
THESE OUT 

BE ABLE TO 
DERIVE THIS. 

( ) 2
r,t probability (volume) density for finding particle at rΨ =
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Prob. of finding particle between x  & x  = x dx x x xψ ≈ ψ = ∆∫
UNDERSTAND WHY INTEGRAL IS 
APPROXIMATED BY A PRODUCT. 

CARTESIAN COORDINATES GO FROM -∞ TO +∞ 
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The expectation value (value expected after many measurements) of f(x) with a probability 

density ( ) 2
xψ  is  

 
 
 

3-D SCHRÖDINGER EQUATION 
 For the hydrogen, we assume a purely radial potential due 
to the charge of the proton (PE = force x distance). 

 
                                  

 
The electron's energy can only be multiples of the Rydberg 
Energy as shown in TZDII equations 5.22 and 5.23. 

 
 
 
Separation of Variables 
 Assume that the wave function of the electron can be written as a product 
 
 
Substituting this into the Schrödinger equation and setting  
 
 
 
 
Yields three differential equations, one in each variable that can be solved for various values of 
n, m and ℓ. 
 
The φ and θ solutions depending on m and ℓ are the Spherical Harmonics with the θ solutions 
given in Table 8.1 as the Associated Legendre Functions. 
 
The R solutions depending on n and ℓ are given in table 8.2.  The normalization of these 
equations requires that the electron be found within a spherical volume, thus the differential 
volume element (supplied by the normalization of the θ and φ solutions in the full wave function) 
becomes 4πr2dr, giving 
 
 
 
Normalization                                    
 
 
 
Know how to demonstrate a function is a solution to a differential equation. 

( ) ( ) ( ) ( )2
f x x dx f x p x dxψ =∫ ∫ TZDII (7.69) 
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( ) ( ) ( ) ( )r, , R rψ θ φ = Θ θ Φ φ

2Function of Functions of r and mφ = θ = −

( )Function of Function of r k 1θ = = − = − + 

KNOW 
THIS. 

HAVE A 
CONCEPTUAL 

UNDERSTANDING 
OF THIS PROCESS. 

( ) 22

0

4 r R r dr 1
∞

π =∫
r IN SPHERICAL GOES FROM 0 TO ∞ 

TZDII (8.84) 

BE ABLE 
TO 

DRAW 
THIS 
AND 

WRITE 
x, y, & 

z in 
terms 

of                 
r, θ, & φ 
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QUANTUM NUMBERS GIVE PHYSICAL QUANTITIES (THAT WE CAN MEASURE IN THE LAB!) 
 
 Principle Quantum Number, n gives the energy of a state:   
  n = 1, 2, 3, … 
 
 
 Angular Momentum Quantum Number, ℓ gives magnitude  
 of the angular momentum: 
  ℓ = 0, 1, 2, 3, …, (n – 1) 
  The orbitals are named for the ℓ values, 
   s: ℓ = 0  = sharp 
   p: ℓ = 1  = principle 
   d: ℓ = 2 = diffuse  
   f: ℓ = 3 = fundamental 
 
  Magnetic Quantum Number, m gives the z-component  
 of the angular momentum: 
  m = -ℓ, …, 0, … ,ℓ 
 
  Spin Quantum Number, ms gives the z-component 
 of the spin angular momentum: 
  ms = ±½    
  Magnitude of the Spin Angular Momentum is given by S and s:  
 
 
 
ATOMS AND MOLECULES 
 
 The independent particle approximation knits together the potentials of the innermost 
electron (-Zke2/r) and the outermost (-ke2/r) with Zeff which accounts for electron shielding. 
 
 
 
 This makes the energy slightly different for the s, p, d, and f orbital levels. 
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ATOMS AND MOLECULES 
  As the number of protons increases in heavier nuclei, the electrons fill higher energy levels. 

 - The structure of the Periodic Table reflects the structure of electron energy levels 
   s: 2e-, p: 6 e-, d: 10 e-, f: 14 e- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 - electrons in inner shells shield nuclear charge from outer electrons (≲ 1 e of charge) 
 - electrons in the same shell shield charge from each other (≲ ½ e of charge) 

  - Elements with full shells (e.g. He, Ca, Zn, Kr) are the least chemically active in each row 
 - Elements one electron from full (Cl, Br) bind to fill that shell (high electron affinity) 
 - Elements with a single (or few) electrons in an outer shell (Na, Li) are easily ionized 
 
STATISTICAL MECHANICS 
Energy Distributions of Particles 
 To describe how the energy is distributed among particles in large collections (gases, liquids 
and solids), physicists developed different energy distributions based on the types of particles 
 
   
 
 
 
 
 
 
Maxwell-Boltzmann Statistics: Classical Particles 
 Classical particles are distinguishable, only interact with each other through elastic collisions 
and are at a low enough density that the wave functions don’t overlap. 
 The mean square is the "average" physicists use since it relates to kinetic energy 
 
 
 
 

smart guysn(E)dE g(E)F=

number of particles with E < energy < E + dE [n(E) = number/energy …number energy 
 

smart guy factor expressing behavior of particle 
type: classical, Fermion, or Boson 

density of states (number of E < available energy states < E 
  

21 3mv kT
2 2
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Classical vs. Quantum Statistics 
 Quantum statistics must be used if the particle wave functions overlap.   
 
Fermi-Dirac Statistics: Fermion Quantum Particles 
 Fermions have ½-integer spins and obey the Pauli Exclusion Principal stating that only one can 
occupy any quantum state.    
 
Fermi Energy, EF is the highest occupied state at T = 0 and gives 
a Fermi energy and Fermi velocity 
 
 
 
 
Fermi-Dirac Factor 
 The probability that a given state will be occupied is given by FFD that is equal to 1 for E < EF 
and zero for  E > EF. 
 
 
Fermi-Dirac Electron Energies 
 The average energy of the conduction (valence) electrons 
(all the particles in the green area in the above plot) 
 
 
The number of particles at the Fermi Energy is ALWAYS 
 
 
 
The energy of the particles excited above the Fermi Energy is 
 
 
 
Bose-Einstein Statistics: Boson Quantum Particles 
 Bosons have zero or integer spins and do not obey 
the Pauli Exclusion Principal, thus any number can 
occupy a given quantum state.   
 
Wien Displacement Law: 
 
Stefan-Boltzmann Law: 
 Where ε is the emissivity, the fraction of energy going into radiation, and the Stefan-
Boltzmann constant is σ = 5.67 x 10-8 W/(m2K4). 
 
Bose-Einstein Factor 
 No normalization constant because particles can be ephemeral. 
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THIS WILL BE GIVEN.  
KNOW HOW TO GET 

TF AND VF. 

THIS WILL BE GIVEN.  KNOW HOW TO 
GET ITS VALUES FOR T = 0. 
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Planck curves for 
Canopus (T=7,500K) and                            

the Sun (T=5,800K) 
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Electrical Conductivity 
 Ohm’s Law, in terms of current density (C/m2), electric field and electrical conductivity. 
  
 
 Drude model:  
 
 
 
 
    
 Einstein model:  
 
 
 
Heat Capacity 
 Energy sorts itself into all the available bins (equipartition).  Maxwell-Boltzmann, Fermi-
Dirac, and Bose-Einstein statistics were all needed to explain the bins into which energy is 
sorted as it absorbs energy. This allows us to explain how the temperature rises in a solid. 
 
Region I: MB Statistics 
 Each quadratic energy term absorbs   
½kT of energy.  Ions vibrate in 3-D as if 
on springs: 3 x (½kx2 + ½mv2)  
 
 
Region II: BE Statistics 
 Quantum phonos (bosons) vibrate at 
an energy, Eph = ħωph with TE = ħωph/k 
 
 
 
 
Region III: BE Statistics + Debye 
 Quantum phonos (bosons) vibrate at a range of energies from zero to a maximum expressed 
by the Debye temperature, TD = hfD/k 
 
 
Region IV: FD Statistics 
 Conduction electrons absorb energy to "leak" above the Fermi Energy expressed by TF 
 
 
 
YOU DON’T NEED TO MEMORIZE ANY OF THE EQUATIONS, BUT BE ABLE TO IDENTIFY WHICH STATISTICS THEY ARE DERIVED FROM, 
WHY THOSE STATISTICS ARE USED, WHAT EACH EQUATION EXPLAINS AND WHAT ITS LIMITATIONS ARE. 
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Specific Heat of a Solid Metal
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