Essential Modern Physics Knowledge

Complex Numbers

For $\mathbf{z}=\mathrm{x}+\mathrm{iy}$, the complex conjugate is $\mathrm{z}^{*}=\mathrm{x}$ - iy and the absolute value is the distance on the complex plane from the origin to the point z.

$$
|z|^{2}=z z^{\star}=(x+i y)(x-i y)=x^{2}+y^{2}
$$

We also utilize Euler's formula stating that $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$.

Particle in a box: allowed energy states

For a quantum particle of energy, E, in a potential box where $U(x)=0$ for $0<x<a$, it can only exist between $x=0$ and $x=a$ (since $E=K+U$ and $U=\infty$ outside of $0<x<a$). A quantum particle is described by a wave function that can exist in the box at only certain wavelengths (λ, first three shown) the wave function must be zero at the sides ($x=0$ \& $x=a$).

For a standing wave, $\psi(x)=A \sin (k x)+B \cos (k x)$, this requires that $k a=n \pi$ where $n=1,2,3, \ldots$ and $k=\frac{2 \pi}{\lambda}$ is the wave number
 *** Other than saying a quantum particle is described by a wave, this is just math! ***

The physics comes in with de Broglie:

$$
\mathrm{p}=\frac{\mathrm{h}}{\lambda}=\hbar \mathrm{k} \text { for } \mathrm{k}=\frac{2 \pi}{\lambda} \text { and } \hbar=\frac{\mathrm{h}}{2 \pi} \quad \begin{aligned}
& \text { KNOW THESE } \\
& \text { RELATIONSHIPS! }
\end{aligned}
$$

Thus, the allowed momenta of the particle in the box are:

$$
\mathrm{a}=\frac{\mathrm{n}}{2} \lambda=\frac{n \pi}{\mathrm{k}}=\frac{\mathrm{n} \pi \hbar}{\mathrm{p}} \Rightarrow \mathrm{p}=\frac{\mathrm{n} \pi \hbar}{\mathrm{a}} \quad \begin{gathered}
\text { BE ABLE TO FIGURE } \\
\text { THESE OUT }
\end{gathered}
$$

Since the energy of the particle is purely kinetic $(U=0), E=p^{2} / 2 m$ gives the allowed energies:

$$
\begin{align*}
& \text { BE ABLE TO } \tag{7.23}\\
& \text { DERIVE THIS. }
\end{align*} \quad E=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}, n=1,2,3, \ldots
$$

Probability Density, Normalization, \& Expectation Value

$|\Psi(\vec{r}, t)|^{2}=$ probability (volume) density for finding particle at $\vec{r} \quad$ TZDII (6.15)

Normalization
UNDERSTAND WHY INTEGRALIS
APPROXIMATED BY A PRODUCT.

The expectation value (value expected after many measurements) of $f(x)$ with a probability density $|\psi(x)|^{2}$ is

$$
\begin{equation*}
\int f(x)|\psi(x)|^{2} d x=\int f(x) p(x) d x \tag{7.69}
\end{equation*}
$$

Separation of Variables

3-D Schrödinger Equation

For the hydrogen, we assume a purely radial potential due to the charge of the proton ($P E=$ force \times distance).

$$
U(r)=-\frac{k e^{2}}{r}
$$

The electron's energy can only be multiples of the Rydberg Energy as shown in TZDII equations 5.22 and 5.23.

$$
E=-\frac{m_{e}\left(k e^{2}\right)^{2}}{2 \hbar^{2}} \frac{1}{n^{2}}=\frac{E_{R}}{n^{2}}=-\frac{13.6}{n^{2}} e V \quad \text { THIS. }
$$

Assume that the wave function of the electron can be written as a product

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

Substituting this into the Schrödinger equation and setting

Have a CONCEPTUAL UNDERSTANDING OF THIS PROCESS.

$$
\text { Function of } \theta=\text { Function of } r=-k=-\ell(\ell+1)
$$

Yields three differential equations, one in each variable that can be solved for various values of n, m and l.

The ϕ and θ solutions depending on m and l are the Spherical Harmonics with the θ solutions given in Table 8.1 as the Associated Legendre Functions.

The R solutions depending on n and l are given in table 8.2. The normalization of these equations requires that the electron be found within a spherical volume, thus the differential volume element (supplied by the normalization of the θ and ϕ solutions in the full wave function) becomes $4 \pi r^{2} d r$, giving

$$
\text { Prob. of finding } e^{-} \text {in a spherical volume }=\int_{r_{1}}^{r_{2}} 4 \pi r^{2}|R(r)|^{2} d r
$$

Normalization

$$
\begin{equation*}
\int_{0}^{\infty} 4 \pi r^{2}|R(r)|^{2} d r=1 \tag{8.84}
\end{equation*}
$$

Know how to demonstrate a function is a solution to a differential equation.

Quantum Numbers give physical quantities (that we can measure in the lab!)

Principle Quantum Number, n gives the energy of a state:
$n=1,2,3, \ldots$

$$
E_{n}=-\frac{1}{2} \frac{m_{e}\left(k e^{2}\right)^{2}}{n^{2} \hbar^{2}}=\frac{-13.6 \mathrm{eV}}{n^{2}}
$$

Angular Momentum Quantum Number, ℓ gives magnitude of the angular momentum:

$$
l=0,1,2,3, \ldots,(n-1)
$$

$$
|\vec{L}|=\hbar \sqrt{\ell(\ell+1)}
$$

The orbitals are named for the l values,

$$
s: l=0=\text { sharp }
$$

p: $\ell=1=$ principle
d: $\ell=2=$ diffuse

$$
f: l=3=\text { fundamental }
$$

Magnetic Quantum Number, m gives the z-component of the angular momentum:

$$
L_{z}=m \hbar
$$

$$
m=-l, \ldots, 0, \ldots, l
$$

Spin Quantum Number, m_{s} gives the z-component
of the spin angular momentum:

$$
S_{z}=m_{s} \hbar
$$

$$
m_{s}= \pm \frac{1}{2}
$$

Magnitude of the Spin Angular Momentum is given by S and s :

$$
|\vec{s}|=\hbar \sqrt{s(s+1)}=\frac{\sqrt{3}}{2} \hbar, s=\frac{1}{2}
$$

atoms and Molecules

The independent particle approximation knits together the potentials of the innermos \dagger electron ($-Z k e^{2} / r$) and the outermost ($-\mathrm{ke}^{2} / r$) with Zeff which accounts for electron shielding.

$$
U_{\text {Multielectron }}(r)=-Z_{\text {eff }} \frac{k e^{2}}{r} \quad E_{\text {Multielectron }}(r)=-Z_{\text {eff }}^{2} \frac{E_{R}}{n^{2}}
$$

This makes the energy slightly different for the s, p, d, and forbital levels.

atoms and Molecules

As the number of protons increases in heavier nuclei, the electrons fill higher energy levels.

- The structure of the Periodic Table reflects the structure of electron energy levels

$$
s: 2 e^{-}, p: 6 e^{-}, d: 10 e^{-}, f: 14 e^{-}
$$

n	s-shell		d and f shells filling										p-shell filling					
1	H																	He
2	Li	Be											B	C	N	0	F	Ne
3	Na	Mg											Al	Si	P	S	Cl	Ar
4/3	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5/4	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
6/5/4	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7/6/5	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

- electrons in inner shells shield nuclear charge from outer electrons ($\leqslant 1$ e of charge)
- electrons in the same shell shield charge from each other ($\lesssim \frac{1}{2}$ e of charge)
- Elements with full shells (e.g. He, Ca, Zn, Kr) are the least chemically active in each row
- Elements one electron from full (Cl, Br) bind to fill that shell (high electron affinity)
- Elements with a single (or few) electrons in an outer shell (Na, Li) are easily ionized

Statistical Mechanics

Energy Distributions of Particles

To describe how the energy is distributed among particles in large collections (gases, liquids and solids), physicists developed different energy distributions based on the types of particles

Maxwell-Boltzmann Statistics: Classical Particles

Classical particles are distinguishable, only interact with each other through elastic collisions and are at a low enough density that the wave functions don't overlap.

The mean square is the "average" physicists use since it relates to kinetic energy

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T
$$

Classical vs. Quantum Statistics

Quantum statistics must be used if the particle wave functions overlap.

Fermi-Dirac Statistics: Fermion Quantum Particles

Fermions have $\frac{1}{2}$-integer spins and obey the Pauli Exclusion Principal stating that only one can occupy any quantum state.

Fermi Energy, E_{F} is the highest occupied state at $\mathrm{T}=0$ and gives a Fermi energy and Fermi velocity

THIS WILL BE GIVEN. KNOW HOW TO GET
T_{F} AND V_{F}.

$$
E_{F}=\frac{h^{2}}{8 m}\left(\frac{3}{\pi} \frac{N}{L^{3}}\right)^{2 / 3} \quad T_{F}=\frac{E_{F}}{k} \quad v_{F}=\sqrt{\frac{2 E_{F}}{m}}
$$

Fermi-Dirac Factor

The probability that a given state will be occupied is given by $F_{F D}$ that is equal to 1 for $E<E_{F}$ and zero for $E>E_{F}$.

$$
F_{F D}=\frac{1}{e^{\left(E-E_{F} / K T\right)}+1}
$$

THIS WILL BE GIVEN. KNOW HOW TO
GET ITS VALUES FOR $T=0$.
$n_{\text {ED }}(\mathrm{E})$

Fermi-Dirac Electron Energies

The average energy of the conduction (valence) electrons (all the particles in the green area in the above plot)

$$
\bar{E}_{\text {Conduction e }}=\frac{3}{5} E_{F}
$$

The number of particles at the Fermi Energy is ALWAYS

$$
n_{F D}\left(E_{F}\right)=\frac{3}{4} \frac{N}{E_{F}}
$$

The energy of the particles excited above the Fermi Energy is

$$
\bar{E}_{\text {excited }}=E_{F}+2\left(\frac{\pi}{3} k T\right)
$$

Bose-Einstein Statistics: Boson Quantum Particles

Bosons have zero or integer spins and do not obey the Pauli Exclusion Principal, thus any number can occupy a given quantum state.

Wien Displacement Law: $\lambda_{\max } \mathrm{T}=2.898 \times 10^{-3} \mathrm{mK}$

Stefan-Boltzmann Law: $R(T)=\epsilon \sigma T^{4}$

Where ε is the emissivity, the fraction of energy going into radiation, and the StefanBoltzmann constant is $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$.

Bose-Einstein Factor

No normalization constant because particles can be ephemeral.

$$
F_{B E}=\frac{1}{e^{E / k T}-1}
$$

Electrical Conductivity

Ohm's Law, in terms of current density $\left(C / \mathrm{m}^{2}\right)$, electric field and electrical conductivity.

$$
\overrightarrow{\mathrm{J}}=\sigma \overrightarrow{\mathrm{E}}
$$

Drude model:

$$
\begin{aligned}
& v_{\text {rms }, M B}=\sqrt{\frac{3 \mathrm{kT}}{m_{e}}} \quad v_{\text {drift }}=a_{E} \tau=\left(\frac{e E}{m_{e}}\right)\left(\frac{\ell}{v_{M B}}\right) \\
& j_{\text {orude }}=n e v_{\text {drift }}=n e\left(a_{E} \tau\right)=\left(\frac{n e^{2} \ell}{\sqrt{3 m_{e} k}} T^{-1 / 2}\right) E
\end{aligned}
$$

10 times too small and $\propto T^{-}$
Einstein model:

$$
\mathrm{V}_{\text {Fermi }}=\sqrt{\frac{2 \mathrm{E}_{\mathrm{F}}}{m_{e}}} \quad \ell_{\text {mean free path }}=100 \frac{\ell_{\text {interatomic }}}{T} \quad 10 \text { times too small and } \propto \mathrm{T}^{-1}
$$

Heat Capacity

Energy sorts itself into all the available bins (equipartition). Maxwell-Boltzmann, FermiDirac, and Bose-Einstein statistics were all needed to explain the bins into which energy is sorted as it absorbs energy. This allows us to explain how the temperature rises in a solid.

Region I: MB Statistics

Each quadratic energy term absorbs $\frac{1}{2} k T$ of energy. Ions vibrate in 3-D as if on springs: $3 \times\left(\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2}\right)$

$$
C_{V, M B}=3 R
$$

Region II: BE Statistics

Quantum phonos (bosons) vibrate at an energy, $E_{\text {ph }}=\hbar \omega_{\text {ph }}$ with $T_{E}=\hbar \omega_{\text {ph }} / k$

$$
C_{V, B E}=3 R\left(\frac{T_{E}}{T}\right)^{2} \frac{e^{T_{E} / T}}{\left(e^{T_{E} / T}-1\right)^{2}}
$$

Region III: BE Statistics + Debye

Quantum phonos (bosons) vibrate at a range of energies from zero to a maximum expressed by the Debye temperature, $T D=h f_{D} / k$

$$
C_{V, D}=\frac{12 \pi^{4}}{5} R\left(\frac{T}{T_{D}}\right)^{3}
$$

Region IV: FD Statistics
Conduction electrons absorb energy to "leak" above the Fermi Energy expressed by T_{F}

$$
C_{V, F D}=\frac{\pi^{2}}{2} R \frac{T}{T_{F}}
$$

YOU DON'T NEED TO MEMORIZE ANY OF THE EQUATIONS, BUT BE ABLE TO IDENTIFY WHICH STATISTICS THEY ARE DERIVED FROM, WHY THOSE STATISTICS ARE USED, WHAT EACH EQUATION EXPLAINS AND WHAT ITS LIMITATIONS ARE.

